The Nogo-C2/Nogo Receptor Complex Regulates the Morphogenesis of Zebrafish Lateral Line Primordium through Modulating the Expression of dkk1b, a Wnt Signal Inhibitor

نویسندگان

  • Hao-Wei Han
  • Chih-Ming Chou
  • Cheng-Ying Chu
  • Chia-Hsiung Cheng
  • Chung-Hsiang Yang
  • Chin-Chun Hung
  • Pung-Pung Hwang
  • Shyh-Jye Lee
  • Yung-Feng Liao
  • Chang-Jen Huang
چکیده

The fish lateral line (LL) is a mechanosensory system closely related to the hearing system of higher vertebrates, and it is composed of several neuromasts located on the surface of the fish. These neuromasts can detect changes in external water flow, to assist fish in maintaining a stationary position in a stream. In the present study, we identified a novel function of Nogo/Nogo receptor signaling in the formation of zebrafish neuromasts. Nogo signaling in zebrafish, like that in mammals, involves three ligands and four receptors, as well as three co-receptors (TROY, p75, and LINGO-1). We first demonstrated that Nogo-C2, NgRH1a, p75, and TROY are able to form a Nogo-C2 complex, and that disintegration of this complex causes defective neuromast formation in zebrafish. Time-lapse recording of the CldnB::lynEGFP transgenic line revealed that functional obstruction of the Nogo-C2 complex causes disordered morphogenesis, and reduces rosette formation in the posterior LL (PLL) primordium during migration. Consistent with these findings, hair-cell progenitors were lost from the PLL primordium in p75, TROY, and Nogo-C2/NgRH1a morphants. Notably, the expression levels of pea3, a downstream marker of Fgf signaling, and dkk1b, a Wnt signaling inhibitor, were both decreased in p75, TROY, and Nogo-C2/NgRH1a morphants; moreover, dkk1b mRNA injection could rescue the defects in neuromast formation resulting from knockdown of p75 or TROY. We thus suggest that a novel Nogo-C2 complex, consisting of Nogo-C2, NgRH1a, p75, and TROY, regulates Fgf signaling and dkk1b expression, thereby ensuring stable organization of the PLL primordium.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dev102541 3212..3221

Canonical Wnt signaling plays crucial roles during development and disease.HowWnt signaling ismodulated in different in vivo contexts is currently not well understood. Here, we investigate the modulation of Wnt signaling in the posterior lateral line primordium (pLLP), a cohort of ∼100 cells that collectively migrate along the trunk of the zebrafish embryo. The pLLP comprises proliferative prog...

متن کامل

Dev102541 1..10

Canonical Wnt signaling plays crucial roles during development and disease.HowWnt signaling ismodulated in different in vivo contexts is currently not well understood. Here, we investigate the modulation of Wnt signaling in the posterior lateral line primordium (pLLP), a cohort of ∼100 cells that collectively migrate along the trunk of the zebrafish embryo. The pLLP comprises proliferative prog...

متن کامل

TGFβ1a regulates zebrafish posterior lateral line formation via Smad5 mediated pathway.

The zebrafish sensory posterior lateral line (pLL) has become an attractive model for studying collective cell migration and cell morphogenesis. Recent studies have indicated that chemokine, Wnt/β-catenin, Fgf, and Delta-Notch signaling pathways participate in regulating pLL development. However, it remains unclear whether TGFβ signaling pathway is involved in pLL development. Here we report a ...

متن کامل

Identification and characterization of alternative promoters of zebrafish Rtn-4/Nogo genes in cultured cells and zebrafish embryos

In mammals, the Nogo family consists of Nogo-A, Nogo-B and Nogo-C. However, there are three Rtn-4/Nogo-related transcripts were identified in zebrafish. In addition to the common C-terminal region, the N-terminal regions of Rtn4-n/Nogo-C1, Rtn4-m/Nogo-C2 and Rtn4-l/Nogo-B, respectively, contain 9, 25 and 132 amino acid residues. In this study, we isolated the 5'-upstream region of each gene fro...

متن کامل

Wnt/beta-catenin and Fgf signaling control collective cell migration by restricting chemokine receptor expression.

Collective cell migration is a hallmark of embryonic morphogenesis and cancer metastases. However, the molecular mechanisms regulating coordinated cell migration remain poorly understood. A genetic dissection of this problem is afforded by the migrating lateral line primordium of the zebrafish. We report that interactions between Wnt/beta-catenin and Fgf signaling maintain primordium polarity b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014